New edition of a well-known classic in the field; Previous edition sold over 6000 copies worldwide; Fully-worked examples; Many carefully selected problems
Josef Stoer Boeken






Convexity and Optimization in Finite Dimensions I
- 312bladzijden
- 11 uur lezen
Dantzig's development of linear programming into one of the most applicable optimization techniques has spread interest in the algebra of linear inequalities, the geometry of polyhedra, the topology of convex sets, and the analysis of convex functions. It is the goal of this volume to provide a synopsis of these topics, and thereby the theoretical back ground for the arithmetic of convex optimization to be treated in a sub sequent volume. The exposition of each chapter is essentially independent, and attempts to reflect a specific style of mathematical reasoning. The emphasis lies on linear and convex duality theory, as initiated by Gale, Kuhn and Tucker, Fenchel, and v. Neumann, because it represents the theoretical development whose impact on modern optimi zation techniques has been the most pronounced. Chapters 5 and 6 are devoted to two characteristic aspects of duality theory: conjugate functions or polarity on the one hand, and saddle points on the other. The Farkas lemma on linear inequalities and its generalizations, Motzkin's description of polyhedra, Minkowski's supporting plane theorem are indispensable elementary tools which are contained in chapters 1, 2 and 3, respectively. The treatment of extremal properties of polyhedra as well as of general convex sets is based on the far reaching work of Klee. Chapter 2 terminates with a description of Gale diagrams, a recently developed successful technique for exploring polyhedral structures. Inhaltsverzeichnis 1 Inequality Systems.- 1.1. Linear Combinations of Inequalities.- 1.2. Fourier Elimination.- 1.3. Proof of the Kuhn-Fourier Theorem.- 1.4. Consequence Relations. The Farkas Lemma.- 1.5. Irreducibly Inconsistent Systems.- 1.6. Transposition Theorems.- 1.7. The Duality Theorem of Linear Programming.- 2 Convex Polyhedra.- 2.1. Means and Averages.- 2.2. Dimensions.- 2.3. Polyhedra and their Boundaries.- 2.4. Extreme and Exposed Sets.- 2.5. Primitive Faces. The Finite Basis Theorem.- 2.6. Subspaces. Orthogonality.- 2.7. Cones. Polarity.- 2.8. Polyhedral Cones.- 2.9. A Direct Proof of the Theorem of Weyl.- 2.10. Lineality Spaces.- 2.11. Homogenization.- 2.12. Decomposition and Separation of Polyhedra.- 2.13. Face Lattices of Polyhedral Cones.- 2.14. Polar and Dual Polyhedra.- 2.15. Gale Diagrams.- 3 Convex Sets.- 3.1. The Normed Linear Space Rn.- 3.2. Closure and Relative Interior of Convex Sets.- 3.3. Separation of Convex Sets.- 3.4. Supporting Planes and Cones.- 3.5. Boundedness and Polarity.- 3.6. Extremal Properties.- 3.7. Combinatorial Properties.- 3.8. Topological Properties.- 3.9. Fixed Point Theorems.- 3.10. Norms and Support Functions.- 4 Convex Functions.- 4.1. Convex Functions.- 4.2. Epigraphs.- 4.3. Directorial Derivatives.- 4.4. Differentiable Convex Functions.- 4.5. A Regularity Condition.- 4.6. Conjugate Functions.- 4.7. Strongly Closed Convex Functions.- 4.8. Examples of Conjugate Functions.- 4.9. Generalization of Convexity.- 4.10. Pseudolinear Functions.- 5 Duality Theorems.- 5.1. The Duality Theorem of Fenchel.- 5.2. Duality Gaps.- 5.3. Generalization of Fenchel s Duality Theorem.- 5.4. Proof of the Generalized Fenchel Theorem.- 5.5. Alternative Characterizations of Stability.- 5.6. Generation of Stable Functions.- 5.7. Rockafellar s Duality Theorem.-5.8. Duality Theorems of the Dennis-Dorn Type.- 5.9. Duality Theorems for Quadratic Programs.- 6 Saddle Point Theorems.- 6.1. The Minimax Theorem of v. Neumann.- 6.2. Saddle Points.- 6.3. Minimax Theorems for Compact Sets.- 6.4. Minimax Theorems for Noncompact Sets.- 6.5. Lagrange Multipliers.- 6.6. Kuhn-Tucker Theory for Differentiable Functions.- 6.7. Saddle Points of the Lagrangian.- 6.8. Duality Theorems and Lagrange Multipliers.- 6.9. Constrained Minimax Programs.- 6.10. Systems of Convex Inequalities.- Author and Subject Index.
Aus den Besprechungen: "Diese Einf hrung zeichnet sich durch eine klare, gut lesbare Darstellung aus und ist eine gelungene Synthese zwischen theoretischer Begr ndung und praktischer Anwendung der behandelten Methoden. Deshalb ist sie auch zu einem Standardlehrbuch der Numerischen Mathematik geworden."Internationale Mathematische Nachrichten "Unter den Numerik-Lehrb chern ... sei auf das vorliegende Buch besonders hingewiesen, da hier bei allen Anspr chen an mathematische Strenge das Schwergewicht auf die Bereitstellung von praktikablen Algorithmen nach neuesten Erkenntnissen mit vielen numerischen Beispielen und kritischen Beurteilungen liegt....F r Veranstaltungen der Numerik und ihren Anwendungen in der Informatik findet der Lehrende viele Anregungen und gute Informationsm glichkeiten." Die neue Hochschule
Einführung in die numerische Mathematik I
unter Berücksichtigung von Vorlesungen von F. L. Bauer
- 291bladzijden
- 11 uur lezen
Einführung in die Numerische Mathematik II
- 308bladzijden
- 11 uur lezen
Dieses zweibändige Standardlehrbuch bietet einen umfassenden und aktuellen Überblick über die Numerische Mathematik. Dabei wird besonderer Wert auf solche Vorgehensweisen und Methoden gelegt, die sich durch große Wirksamkeit auszeichnen. Ihr praktischer Nutzen, aber auch die Grenzen ihrer Anwendung werden vergleichend diskutiert. Zahlreiche Beispiele runden dieses unentbehrliche Buch ab.Die Neuauflage des zweiten Bandes wurde vollständig überarbeitet und ergänzt um eine Beschreibung weiterer Techniken im Rahmen der Mehrzielmethode zur Lösung von Randwertproblemen für Gewöhnliche Differentialgleichungen. "Das Lehrbuch ... setzt Maßstäbe für eine Numerik-Vorlesung und ist jedem Studenten der angewandten Mathematik zu empfehlen." Die Neue Hochschule
Dieses zweibändige Standardlehrbuch bietet einen umfassenden und aktuellen Überblick über die Numerische Mathematik. Dabei wird viel Wert auf solche Vorgehensweisen und Methoden gelegt, die sich durch große Wirksamkeit auszeichnen. Ihr praktischer Nutzen, aber auch die Grenzen ihrer Anwendung werden vergleichend diskutiert. Zahlreiche Beispiele runden dieses unentbehrliche Buch ab. Die Neuauflage des ersten Bandes wurde um die Darstellung der B-Splines und der Algorithmen zu ihrer Berechnung, sowie durch ein Kapitel über die Lösung von großen Systemen mit dünn besetzten Matrizen erweitert.
Einführung in die Numerische Mathematik I
Unter Berücksichtigung von Vorlesungen von F.L. Bauer