Meer dan een miljoen boeken binnen handbereik!
Bookbot

Friedrich Sauvigny

    15 februari 1953
    Partielle Differentialgleichungen der Geometrie und der Physik
    Partial differential equations 1
    Partial differential equations 2
    Partial Differential Equations 1
    Partial Differential Equations 2
    Minimal surfaces
    • Minimal surfaces

      • 688bladzijden
      • 25 uur lezen
      5,0(1)Tarief

      This volume is the first in a three-part treatise on minimal surfaces, focusing on boundary value problems. It serves as a revised and expanded version of earlier monographs. The book opens with fundamental concepts of surface theory in three-dimensional Euclidean space, introducing minimal surfaces as stationary points of area or surfaces with zero mean curvature. A minimal surface is defined as a nonconstant harmonic mapping that is conformally parametrized and may have branch points. The classical theory of minimal surfaces is explored, featuring numerous examples, Björling’s initial value problem, reflection principles, and important theorems by Bernstein, Heinz, Osserman, and Fujimoto. The second part addresses Plateau’s problem and its modifications, presenting a new elementary proof that the area and Dirichlet integral share the same infimum for admissible surfaces spanning a prescribed contour. This leads to a simplified solution for minimizing both area and Dirichlet integral, along with new proofs of Riemann and Korn-Lichtenstein's mapping theorems, and a solution to the simultaneous Douglas problem for contours with multiple components. The volume also covers stable minimal surfaces, deriving curvature estimates and presenting uniqueness and finiteness results. Additionally, it develops a theory of unstable solutions to Plateau’s problems based on Courant’s mountain pass lemma and solves Dirichlet’s problem for non

      Minimal surfaces
    • Partial Differential Equations 2

      Functional Analytic Methods

      • 472bladzijden
      • 17 uur lezen
      3,0(1)Tarief

      The textbook provides an in-depth exploration of elliptic, parabolic, and hyperbolic equations across multiple variables. In its second volume, it focuses on functional analytic methods and their applications in differential geometry, offering updated and revised content that enhances understanding of complex mathematical concepts.

      Partial Differential Equations 2
    • Partial Differential Equations 1

      Foundations and Integral Representations

      • 464bladzijden
      • 17 uur lezen
      3,0(1)Tarief

      Focusing on geometric and complex variable methods, this revised second edition delves into integral representations of partial differential equations. It provides an in-depth exploration of topics like Brouwer's mapping degree, making it a valuable resource for those studying advanced mathematical concepts. This volume serves as a comprehensive guide for understanding the intricacies of the subject.

      Partial Differential Equations 1
    • Partial differential equations 2

      • 406bladzijden
      • 15 uur lezen

      This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.

      Partial differential equations 2
    • Partial differential equations 1

      • 437bladzijden
      • 16 uur lezen

      This comprehensive two-volume textbook covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Special emphasis is placed on the connection of PDEs and complex variable methods. In this first volume the following topics are treated: Integration and differentiation on manifolds, Functional analytic foundations, Brouwer's degree of mapping, Generalized analytic functions, Potential theory and spherical harmonics, Linear partial differential equations. We solve partial differential equations via integral representations in this volume, reserving functional analytic solution methods for Volume Two.

      Partial differential equations 1
    • Das zweibändige Lehrbuch stellt das Gesamtgebiet der partiellen Differentialgleichungen vom elliptischen, parabolischen und hyperbolischen Typ in zwei und mehreren Veränderlichen vor. Während in diesem Band die partiellen Differentialgleichungen mit Integraldarstellungen gelöst werden, sollen im nächsten Band funktionalanalytische Lösungsmethoden vorgestellt werden. Für Studenten und Dozenten der Mathematik und Physik ab dem 3. Fachsemester.

      Partielle Differentialgleichungen der Geometrie und der Physik
    • Analysis

      Grundlagen, Differentiation, Integrationstheorie, Differentialgleichungen, Variationsmethoden, Funktionenräume, Darstellungssätze

      • 588bladzijden
      • 21 uur lezen

      Die Analyse der Differential- und Integralrechnung wird in diesem Lehrbuch für Mathematik-, Physik- und Informatik-Studierende umfassend behandelt. Es deckt sowohl eindimensionale als auch mehrdimensionale Funktionen ab und führt in komplexe Potenzreihen sowie die Logarithmusfunktion auf der Riemannschen Fläche ein. Die Integration auf Mannigfaltigkeiten wird durch uneigentliche n-dimensionale Integrale und Differentialformen erläutert. Zudem werden Themen wie das Lebesguesche Integral, gewöhnliche Differentialgleichungen und Variationsrechnung behandelt, einschließlich Geodätischer im n-dimensionalen Riemannschen Raum.

      Analysis
    • Analysis

      Grundlagen, Differentiation, Integrationstheorie, Differentialgleichungen, Variationsmethoden

      • 528bladzijden
      • 19 uur lezen

      Das Buch bietet eine moderne Darstellung der Differential- und Integralrechnung für Funktionen in einer und mehreren reellen Veränderlichen sowie in einer komplexen Variablen. Die elementaren Funktionen werden über komplexe Potenzreihen definiert und die Logarithmusfunktion auf ihrer Riemannschen Fläche betrachtet. Nachdem die eindimensionale Integration mittels reeller und komplexer Stammfunktionen durchgeführt ist, wird über das uneigentliche n-dimensionale Riemannsche Integral die Integration auf Mannigfaltigkeiten mit Hilfe von Differentialformen vorgestellt. Mit dem Lebesgueschen Integral und dessen Maßtheorie werden die Banachräume p-fach integrierbarer Funktionen eingeführt. Es werden für gewöhnliche Differentialgleichungen systematisch Existenz-, Eindeutigkeits- und Stabilitätsfragen behandelt. In einem Kapitel zur Variationsrechnung wird direkt über die Untersuchung von Geodätischen der Riemannsche Raum und sein Krümmungsbegriff vorgestellt.

      Analysis
    • Dieses zweibändige Lehrbuch stellt das Gesamtgebiet der partiellen Differentialgleichungen - vom elliptischen, parabolischen und hyperbolischen Typ - in zwei und mehreren Veränderlichen vor. Im vorliegenden zweiten Band werden folgende Themen behandelt: Lösbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, Schaudersche Theorie linearer elliptischer Differentialgleichungen, schwache Lösungen elliptischer Differentialgleichungen, nichtlineare partielle Differentialgleichungen und Charakteristikentheorie, nichtlineare elliptische Systeme mit differentialgeometrischen Anwendungen. Während im vorausgehenden Band die partiellen Differentialgleichungen mit Integraldarstellungen im Mittelpunkt standen, werden nun funktionalanalytische Lösungsmethoden vorgestellt. Dieses Lehrbuch kann daher für einen mehrsemestrigen Kurs verwendet werden. Fortgeschrittene Leser können jedes Kapitel auch unabhängig voneinander studieren.

      Partielle Differentialgleichungen der Geometrie und der Physik 2