This book is well known for its proof that many mathematical systems — including lattice theory and closure algebras — are undecidable. It consists of three treatises from one of the greatest logicians of all time: "A General Method in Proofs of Undecidability," "Undecidability and Essential Undecidability in Mathematics," and "Undecidability of the Elementary Theory of Groups."
Alfred Tarski Boeken
Alfred Tarski was een Poolse logicus en wiskundige die het landschap van de logica in de twintigste eeuw fundamenteel hervormde. Zijn werk, met name op het gebied van de modeltheorie en het concept van waarheid, plaatst hem onder de meest significante denkers uit de geschiedenis. Tarski staat bekend om zijn bijdragen aan de wiskundige logica en abstracte algebra, waarbij zijn invloed zich ook uitstrekt tot de filosofie. Zijn diepgaande onderzoek en innovatieve ideeën blijven hedendaagse wetenschappelijke discussies beïnvloeden.







This classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. Exercises appear throughout.
Alfred Tarski's contributions to logic are comprehensively compiled in this four-volume collection, featuring all his published papers and abstracts from 1921 to 1979. This collection serves as a cornerstone for modern logic in mathematics and philosophy, covering pivotal topics such as the theory of truth in formal languages, decision methods, undecidable theories, and foundational aspects of geometry and set theory. It also explores algebraic logic and universal algebra, showcasing Tarski's lasting impact on the field.
Focusing on the contributions to logic, this collection encompasses all of Alfred Tarski's published papers and abstracts from 1921 to 1979, alongside a detailed bibliography. It highlights foundational works that have significantly influenced contemporary logic in mathematics and philosophy. Key topics include the theory of truth in formalized languages, decision methods, undecidable theories, and various branches such as geometry, set theory, model theory, algebraic logic, and universal algebra, showcasing Tarski's pivotal role in these fields.
Introduction to Logic: and to the Methodology of Deductive Sciences
- 258bladzijden
- 10 uur lezen
The book offers a comprehensive examination of the deductive method, focusing on its foundational principles in the first part. In the second part, it delves into the applications of logic and methodology in developing mathematical theories. Throughout the text, exercises are included to reinforce learning and understanding, making it a practical resource for undergraduate students.
Focusing on the contributions of Alfred Tarski, this comprehensive collection encompasses all his published papers and abstracts from 1921 to 1979, serving as a cornerstone for modern logic in mathematics and philosophy. It explores significant topics such as the theory of truth in formalized languages, decision methods, undecidable theories, foundations of geometry, set theory, model theory, algebraic logic, and universal algebra. This extensive bibliography highlights Tarski's pivotal role in the evolution of logical thought during the twentieth century.
Focusing on the groundbreaking contributions to logic, this comprehensive collection assembles all published papers and abstracts by Alfred Tarski, a pivotal figure alongside Kurt Gödel. Spanning from 1921 to 1979, the four volumes cover essential topics that form the foundation of modern logic, including the theory of truth in formalized languages, decision methods, undecidable theories, and various branches such as geometry, set theory, and algebraic logic. A thorough bibliography complements this extensive compilation, highlighting Tarski's influence in mathematics and philosophy.
Práce polského logika, přeložená do mnoha jazyků, objasňuje nejdůležitější pojmy "matematické logiky". Ukazuje, že logické pojmy prostupují celek matematiky, že obsahují všechny specifické matematické pojmy jako své speciální případy a že logické zákony jsou stále aplikovány v matematických úsudcích. Posléze se snaží vyložit nejdůležitější zásady budování matematických teorií, tj. předmětu metodologie matematiky. Vysvětluje, jak si počínáme při aplikaci těchto zásad v praxi. Nepodává soustavný a přísně deduktivní výklad logiky, žádnou informaci - kromě dvou pasáží - o tradiční aristotelské logice a nepojednává o problémech, jež náleží do tzv. logiky a metodologie empirických věd.Na konci každé kapitoly jsou připojena cvičení.


