Meer dan een miljoen boeken binnen handbereik!
Bookbot

Deep Belief Nets

Deze serie duikt in het geavanceerde domein van kunstmatige intelligentie en onderzoekt neurale netwerkarchitecturen die zijn geïnspireerd op de structuur van het menselijk brein. Het onderzoekt elegante modellen die abstracte concepten kunnen leren uit eenvoudigere componenten, net als menselijke cognitie. Lezers ontdekken de essentiële bouwstenen van deze verfijnde systemen, van fundamentele concepten tot geavanceerde technieken voor beeld- en tijdreeksverwerking. Het werk biedt een diepgaande inkijk in de principes van deze krachtige leeralgoritmen.

Deep Belief Nets in C++ and CUDA C: Volume 1

Aanbevolen leesvolgorde

  1. 1

    Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you’ll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines. What You Will Learn Employ deep learning using C++ and CUDA C Work with supervised feedforward networks Implement restricted Boltzmann machines Use generative samplings Discover why these are important Who This Book Is For Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.

    Deep Belief Nets in C++ and CUDA C: Volume 1