Bookbot

Jim Albert

    Jim Albert is een vooraanstaand hoogleraar statistiek wiens onderzoeksinteresses liggen op het gebied van Bayesiaanse modellering en de toepassing van statistisch denken in sport. Zijn werk duikt in de principes van statistiek en de praktische toepassingen ervan. Zijn publicaties verkennen de nuances van datamodellering en het gebruik van Bayesiaanse methoden om inzichten in data te ontdekken.

    Use R!: Bayesian Computation with R
    • Use R!: Bayesian Computation with R

      • 270bladzijden
      • 10 uur lezen

      The development and application of Bayesian inferential methods have seen significant growth, largely due to powerful simulation-based algorithms that summarize posterior distributions. Interest in the R programming language for statistical analyses has also increased, as its open-source nature, free availability, and extensive contributor packages make it a preferred choice for statisticians. This text introduces Bayesian modeling through computation using R, starting with fundamental Bayesian concepts illustrated by one and two-parameter inferential problems. It covers computational methods like Laplace's method, rejection sampling, and the SIR algorithm within a random effects model framework. The book also introduces Markov Chain Monte Carlo (MCMC) methods, applied to various Bayesian applications including normal and binary response regression, hierarchical modeling, and robust modeling. R algorithms are utilized for developing Bayesian tests and assessing models via the posterior predictive distribution, along with interfacing R with WinBUGS for MCMC. This resource is ideal for introductory courses on Bayesian methods and for practitioners seeking to enhance their knowledge of R and Bayesian techniques. The second edition features new topics like mixtures of conjugate priors and Zellner’s g priors for model selection in linear regression, along with updated R code illustrations in line with the latest LearnBayes package.

      Use R!: Bayesian Computation with R
      3,4