Bookbot

Off-Line Calibration of Dynamic Traffic Assignment

Meer over het boek

Revision with unchanged content. Dynamic Traffic Assignment (DTA) models estimate and predict the evolution of congestion through detailed models and algorithms that capture travel demand, network supply and their complex interactions. The availability of rich time-varying traffic data spanning multiple days, collected by automatic surveillance technology, provides the opportunity to calibrate such a DTA model's many inputs and parameters so that its outputs reflect field con-ditions. DTA models are generally calibrated supply model cali-bration (assuming known demand inputs) is followed by demand calibration with fixed supply parameters. This book develops an off-line DTA model calibration methodology for the simultaneous estimation of all demand and supply inputs and parameters, using sensor data. A complex, non-linear, stochastic optimization problem is solved, using any general traffic data. Case studies with DynaMIT, a DTA model with traffic estimation and prediction capabilities, indicate that the simultaneous approach significantly out-performs the sequential state of the art. This book is addressed to profes-sionals and researchers who apply large-scale trans-portation models.

Uitgave

Een boek kopen

Off-Line Calibration of Dynamic Traffic Assignment, Ramachandran Balakrishna

Taal
Jaar van publicatie
2012
product-detail.submit-box.info.binding
(Paperback)
Zodra we het ontdekt hebben, sturen we een e-mail.

Betaalmethoden

Nog niemand heeft beoordeeld.Tarief