Koop 10 boeken voor 10 € hier!
Bookbot

Contribution of pavement texture factors on fuel consumption

Meer over het boek

Rolling resistance (RR) is a comprehensive term that embraces three major energy dissipation mechanisms (tyre macro-distortion, tyre micro-distortion and pavement macro-distortion), all of which cause more compression in a leading end than in a trailing end of a contact patch. This accounts for an average of 119 MJ/liters of fuel per car yearly. A slight rearrangement in surface texture may therefore decrease fuel consumption bringing substantial long-term socio-economic benefits, which would help in meeting EU limits on CO2 (95 g/km until 2021) fostering sustainable construction of pavements. This study describes a newly developed multi-scale 3-D numerical model and two in-laboratory and one in-situ experimental tests to calculate micro-distortional RR due to indentation of aggregates into visco-elastic tread compound. Two computational and two experimental approaches to quantify micro-distortional RR were developed. The contact forces appeared of a reasonable distribution and magnitude. It was found that micro-distortional RR is higher on a rougher/sparsely packed surface compared to a smoother/tightly packed case; longitudinally grooved concrete was the most energy efficient texture studied. The predictions were confirmed qualitatively using the experiments developed. A numerical solution and experimental techniques can be implemented into Life-Cycle Analysis, allowing a texture-related fuel consumption assessment during the service life stage. The findings confirm that stone-based RR can be substantial in magnitude, but conclusions on low/optimal/sustainable RR texture packing can only be made if friction/drainage/noise and rubber properties are considered together.

Een boek kopen

Contribution of pavement texture factors on fuel consumption, Dmytro Mansura

Taal
Jaar van publicatie
2018
Zodra we het ontdekt hebben, sturen we een e-mail.

Betaalmethoden

Nog niemand heeft beoordeeld.Tarief