Het boek is momenteel niet op voorraad

Meer over het boek
The thesis explores the optimal Bayesian filtering problem by focusing on Gaussian distributions, enabling the development of computationally efficient algorithms. It addresses three specific scenarios: filtering using only Gaussian distributions, employing Gaussian mixture filtering for handling strong nonlinearities, and utilizing Gaussian process filtering in data-driven contexts. For each scenario, the author derives effective algorithms and demonstrates their application to real-world challenges, highlighting the practical implications of these methods in various domains.
Een boek kopen
Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications, Marco Huber
- Taal
- Jaar van publicatie
- 2015
- product-detail.submit-box.info.binding
- (Paperback)
Zodra we het ontdekt hebben, sturen we een e-mail.
Betaalmethoden
Nog niemand heeft beoordeeld.