Bookbot

Linear Algebra and Learning from Data

Parameters

  • 432bladzijden
  • 16 uur lezen

Meer over het boek

Focusing on the intersection of linear algebra and deep learning, this textbook by Professor Gilbert Strang offers a comprehensive course that integrates essential mathematical concepts with practical applications in neural networks. It covers key topics such as the four fundamental subspaces, singular value decompositions, and optimization techniques, along with foundational elements of probability and statistics. The text is designed to be both accessible and rigorous, making it an invaluable resource for students eager to understand how linear algebra underpins modern data learning techniques.

Een boek kopen

Linear Algebra and Learning from Data, Gilbert Strang

Taal
Jaar van publicatie
2019
product-detail.submit-box.info.binding
(Hardcover)
Zodra we het ontdekt hebben, sturen we een e-mail.

Betaalmethoden

Nog niemand heeft beoordeeld.Tarief